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Summary 

A simple analytical semi-empirical model is presented which describes the concentration field 
in a collapsing gas cloud of cylindrical shape. The model examines the processes of top and side 
entrainment, the occurrence of a leading torus and a trailing disk, and Gaussian distributions in 
the entrainment zones. These processes are described for cases in which there are no atmospheric 
effects, i.e., no wind or ambient turbulence. Turbulence within the cloud is self-generated, due to 
the sudden collapse of the cloud. The model contains several universal constants which are eval- 
uated using data from a laboratory study carried out at the University of Arkansas. The model is 
then compared to results from a laboratory study at the Colorado State University and a full scale 
2000 m3 release of freon at Thorney Island. The initial cloud volumes of these laboratory and field 
studies encompass a range of eight orders of magnitude. 

1. Introduction 

In the past decade, there has been intense effort to gain an improved under- 
standing of the process of dense gas dispersion. Stimuli have come from several 
disastrous spills of gases and liquids, as well as from the need to predict with 
some confidence the hazard zones associated with production, transport, and 
storage of chemicals. Dense gas behaviour is not well described by the fre- 
quently used Gaussian dispersion models. A Gaussian model provides a rea- 
sonable description of the concentration distribution within a puff or plume of 
neutral or positive buoyancy. For a gas which has negative buoyancy by virtue 
of high molecular weight, low temperature, or suspended aerosols, the vertical 
growth rate is reduced and the lateral growth rate is enhanced. A low flat cloud 
is generated and remains so until the cloud density is close enough to ambient 
air density such that ambient turbulence can penetrate and control the cloud 
growth. 

Several models have been developed to describe instantaneous spills. Their 
characteristics are described and compared in a comprehensive review by 
Wheatley and Webber [ 11. The variety of models, both analytical and numer- 
ical, suggests the following deficiencies in our understanding of dense gas be- 
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haviour: (1) there are several different expressions for top entrainment and 
for edge entrainment (2) there is no consensus as to whether top or edge en- 
trainment is more important or whether there should even be any distinction 
between the two (3) there are several criteria for determining the means by 
which gravitationally controlled entrainment yields to entrainment by am- 
bient turbulence (4) there is inadequate model evaluation (5) concentration 
estimates may differ by an order of magnitude. 

Most model development has concentrated on cylindrical box models which 
attempt to describe bulk or mean properties, such as radius, height, and con- 
centration, for the dispersing cloud. One of the earliest dense gas box models 
for application in a windless environment was that of Van Ulden [2] incor- 
porating side entrainment only. Another early model by Germeles and Drake 
[ 31 had only top entrainment. In both of these models, the entrainment veloc- 
ity was assumed to be proportional to the radial expansion velocity. Fay [4] 
employed the above entrainment schemes simultaneously and deduced the edge 
entrainment to be negligible. He further modified the model for application in 
non-zero winds and calibrated it using several field and wind tunnel studies. 
In a later paper [5], Fay and Ranck criticized the above entrainment model 
which allowed the cloud height to grow indefinitely, thus violating the law of 
conservation of energy. In a more recent study, Fay and Zemba [6 ] abandon 
the previous entrainment concept and use an empirical model for concentra- 
tion decay based upon concentration observations and upon cloud height ob- 
servations where the cloud height remains fairly constant in time. 

Models such as these are simple enough to integrate analytically. The next 
step in complexity is to improve the physics within the box model structure 
such that a numerical solution is required, with time still being the sole inde- 
pendent variable. One such by Webber and Wheatley [ 71 employs equations 
for the conservation of mass, momentum, and turbulent energy (TE). The 
model is structured as a top entrainment model, in which the entrainment rate 
is controlled by the TE and a TE Richardson number. However, they conclude 
that top entrainment need not be considered in calm conditions and that the 
traditional simple edge entrainment model produces the correct concentration 
decay. At a IUTAM symposium, a paper by Van Ulden [ 81 described a complex 
box model for the 2dimensional spread of a finite release. In accordance with 
the frequently observed feature of a distinct leading head followed by a longer 
lower tail, the model examines the properties of both, using the conservation 
equations for matter and momentum. In later publications [ 9,101, Van Ulden 
modifies the equations and adds an equation for the evolution of turbulent 
kinetic energy. A basic assumption, based on observations, is that edge entrain- 
ment is negligible. 

The purpose of a model is to describe a physical process such that the model 
physics and the solution accuracy are reasonable. There is sufficient conflict 
and uncertainty in the literature to justify other attempts at describing con- 
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centration decay during the early stages of gravitational collapse. We will look 
primarily for dominant processes and simple analytical solutions where pos- 
sible, since these convey the greatest understanding and most compact presen- 
tation in terms of non-dimensional plots. 

The aim of thii paper is to develop, calibrate, and evaluate a simple analyt- 
ical heavy gas model to predict gas concentrations following an instantaneous 
release in a calm environment. The release begins as a uniform cylinder of gas 
at time zero. A cylindrical model is appropriate, since all gas or volatile liquid 
spills of short duration quickly develop quasi-cylindrical symmetry. Dilution 
occurs continuously as air is entrained through the top and side. A cylindrical 
model is particularly appropriate for comparison with several laboratory and 
field experiments which examined the collapse of a uniform cylinder of gas. 

In the first few seconds, the cylinder height decreases and radius increases, 
with relatively little change in the cylinder volume. As entrainment of ambient 
air begins and continues, the height is determined by the difference between 
vertical entrainment and gravitational collapse. Experimental results usually 
show that the cylinder differentiates into two distinct bodies - a leading torus 
and a trailing disk. The properties of each are interesting and both are exam- 
ined in the following model development. 

We also hope to gain a better understanding of the early processes of cloud 
growth which are controlled by gravitational forces alone. This is most easily 
done by examining a data set in which there is no wind or external turbulence. 
When these processes are understood and parameterized, they can be included 
later in a more general atmospheric entrainment model. 

The concentration model is an axisymmetric hybrid box model (Fig. 1). It 
is a function of independent variables z (height ) , r (radius), and t (time). The 
leading torus extends to a radius Rf (frontal radius) and has a rectangular 

Radius of Cloud 

Fig. 1. Bulk model schematic of an expanding cylindrical dense gas cloud as it differentiates into 
a disk and a torus. 



42 

cross-section of width W, and height Hfi The trailing disk has a radius Rd and 
a height Ha Although the torus and disk in reality interact with each other, 
they can be modelled separately to a first approximation. Entrainment of air 
is assumed to occur through the top and sides of each body. Each body is treated 
as a box model in order to calculate a maximum concentration. 

The use of bulk or box models serves several purposes. They identify the 
major processes, establish characteristic dimensions, give reasonable maxi- 
mum values, and are simple to derive and to solve. To these solutions are at- 
tached Gaussian profiles to describe the decrease in concentration due to en- 
trainment of air at the top and at the edges. The Gaussian was selected as a 
trial distribution because of its familiarity and for its mathematical conve- 
nience. (It also allows a smooth transition to a Gaussian distribution resulting 
from dispersion by atmospheric turbulence as the dense puff becomes neutral. ) 
The primary requirements on the part of the model are that mass is conserved, 
that the equations of motion and of entrainment are universal, and that the 
solutions agree with the data. 

The model is its present form is of limited application, since ambient at- 
mospheric turbulence is assumed to be zero. The model may, however, be ap- 
plicable in the early stages of cloud growth in the atmosphere during which 
self-induced turbulence is dominant. This allows it to be applied to the disper- 
sion of dense flammable gases in which a hazard exists only for concentrations 
exceeding 1% by volume. 

The data which are used to calibrate and evaluate the model were generated 
in a laboratory study by Havens and Spicer [ 111. In the study, a right circular 
cylinder of freon and air was instantaneously released. The initial volumes 
were 34, 54, 135, and 535 litres; initial specific gravities were 2.16, 2.91, and 
4.19; initial height/diameter ratios were 0.4,1.0, and 1.57. Concentration time 
series were measured at several vertical and radial positions from the spill 
centre. A total of 67 experiments were reported, each having measurements at 
8 receptors. By plotting in suitable non-dimensional coordinates, the authors 
show the concentration decay within the drifting cloud (Lagrangian mode) to 
be similar to that of the Thorney Island experiments. The latter are full scale 
studies and employ initial freon-air mixtures of 2000 m3 [ 121. 

Each time series graph [ 111 contains results of 2 or 3 trials for identical 
initial conditions and so gives some idea of the variability within each experi- 
ment. For each trial, the data of specific interest to Havens and Spicer were 
the peak concentration, its time of arrival, and the time of arrival of the cloud 
front. As shown in their report [ 111, the peaks were not random fluctuations 
but were distinct and repeatable properties of the expanding cloud. 

Two typical time series from Havens and Spicer [ll] are shown in Fig. 2. 
This sensor was located 2.0 m from the centre of the release point. In Fig. 2 (a), 
the concentration was measured at a height of 0.6 cm. Following the peak con- 
centration, there is a strong dip and then a rise to a second maximum. The dip 
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Fig. 2. Measured concentrations vs. time at two different receptor elevations at a radius of 2 metres 
(Eulerian mode). Initial conditions: V .=54.1 litres, p,/p,=4.19, HJD,=l.O (from Havens and 
Spicer [ll]). 

seems to mark the passage of the torus. The concentration curve measured at 
a height of 6 cm (Fig. 2b) marks the arrival and departure of the torus, but 
sees very little of the trailing cloud which must be significantly lower. 

The present model development explores the roles of both the frontal torus 
and the trailing disk. From the laboratory time series [ 111, we have abstracted 
5 data; time of arrival (t,) of the front, time of several ( tfp) of the frontal peak 
concentration (C&,), and time of arrival ( tdp) of the disk peak concentration 
(C,). (The latter two data are not measurable at the higher monitors.) The 
data are selected at various radii from the release point and at various heights 
above the laboratory floor. Uncertainties in the disk data are larger, since the 
division between disk and torus is not always distinct and undulations in the 
data are sometimes large. 

In addition, data from other zero wind experiments are compared with the 
model results. The comparison is most interesting using experiments which 
differ significantly from those of Havens and Spicer. In other studies, the only 
parameter which is significantly different is the initial volume of gas V,. The 
laboratory studies of Meroney and Lohmeyer [ 131 use three values of V,: 0.035, 
0.165, and 0.45 litres. The full scale Thorney Island experiments [ 121 release 
a gas volume of 2 million litres into the atmosphere. These two studies provide 
a range of 8 orders of magnitude in V, for comparison to the model and to the 
Havens and Spicer data. Plots of concentration histories and isolines from two 
other laboratory studies [ 14,151 were briefly examined but were not used. Their 
results were comparable to the previously mentioned studies. 
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TABLE 1 

Initial conditions and characteristic numbers for each release 

Ref. V0 
(likes) 

KD, 1 T t;, 
eqn.(6) eqn.(V eqn.( IO) 
(cm) (8) (Model 1) 

34.2 4.19 
54.1 4.19 

135 4.19 
535 4.19 

Havens 34.2 2.91 
and 54.1 2.91 
Spicer 34.2 2.16 

135 2.91 
135 2.16 
54.1 4.19 
54.1 4.19 

Meroney 0.035 
and 0.165 
Lohmeyer 0.450 

McQuaid 2x106 

4.19 
4.19 
4.19 

1.6 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
0.4 
1.57 

0.5 
0.5 
0.5 

0.93 

32.5 0.10 2760 
37.8 0.11 3470 
51.3 0.13 5480 
81.2 0.16 10910 
32.5 0.10 2130 
31.8 0.11 2680 
32.5 0.10 1660 
51.3 0.13 4240 
51.3 0.13 3310 
31.8 0.11 3470 
37.8 0.11 3470 

3.3 0.032 
5.5 0.042 
1.1 0.050 

1260 1.46 

90 
190 
315 

290000 

Initial conditions for all releases are given in Table 1. The characteristic 
dimensions in the table are explained later. 

2. Radial growth 

2.1 The conventional model 
As a gravity-driven intrusion spreads, it maintains a distinct front for some 

time. This front corresponds to the leading edge of the torus as discussed in 
the introduction. In this section on radial growth, we will not distinguish be- 
tween torus and disk. The cloud is treated as a uniform cylinder having radius 
R, volume V, and height H. We are interested in developing and calibrating an 
expression for the radius R of the outermost edge of the cloud as it expands as 
a function of time. 

Analyses of virtually all experimental studies of dense collapsing gas clouds 
show that the radial growth is proportional to the square root .of time. The 
driving force is created by the pressure of the negatively buoyant fluid. The 
resulting force may be a combination of terms. A suitable model can be derived 
if one assumes a quasi-equilibrium, i.e., an approximate balancabetween the 
pressure head of the dense gas and the form drag on the expanding rim [ 161. 
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The same model arises by balancing the pressure head against the inertial force 
[ 171. The conventional model for radial growth of a uniform cylinder is shown 
to be 

where 

b=gVAlx (2) 

A= (P-P~)/P, (3) 

In these equations, t is time elapsed, g is the gravitational constant, p and pa 
are the densities of the dense gas and of air respectively, and a, is a propor- 
tionally constant, As the cloud grows and entrains air, V grows while the rel- 
ative density excess A decreases. It is shown in [ 161 that b is conserved for (i) 
isothermal flows and (ii) nonisothermal flows in which the gas and air molar 
specific heats are equal and for which ground heating is negligible. This allows 
eqn. (1) to provide a robust description of a large class of density driven mo- 
tion, the solution for which is 

R2-R2+2a,bij2t - 0 (4) 

where R, is the initial radius of the cylindrical cloud, and b, is the initial buoy- 
ancy given by 

(5) 

If eqn. (4) is rewritten in nondimensional form using the length and time 
scales suggested by Fay [ 41, where 

I= VA’” (6) 

and 

z= (z/g&)“2 

then 

(7) 

R”-Rz =2a1f/n1/2 (8) 
where a= R/l, Z&,=R,/l, and i= t/z. Equation (8) implies that an appropriate 
nondimensional plot of cloud radius measurements versus time in logarithmic 
coordinates should collapse along a single straight line. The data of Havens 
and Spicer [ 111 corroborate this in Fig. 3. In this figure, there is a linear por- 
tion in the range 20 -C t< 100 to which eqn. (8) can be applied. The best value 
for the calibration constant is found to be a, = 1.16 which is in good agreement 
with the generally accepted values of 1.1 k 0.1 as determined from a large num- 
ber of field and laboratory experiments [ 181. Equation (8) is plotted in Fig. 3. 
If we designate the modelled values of R as Rmod and the observed values as 



Fig. 3. Location of the cloud leading edge as a function of time. Upper solid curve from eqn. (8): 
lower solid curve from eqn. (12); 0 data from Havens and Spicer [ 111. 

Robs, then the mean and standard deviation of Rmod/R,,,,s are 1.02 ? 0.053 in the 
range 20 c t< 100. 

For f> 100, there is increased scatter in locating the position of the frontal 
edge of the cloud. This is due to several factors: (1) the signal is weak (2) the 
signal is diffuse rather than sharp (3) the effect of variability between runs 
increases with distance (4) the presence of the laboratory walls may have an 
effect (5) the balance of forces acting on the cloud may change with time such 
that R 2 no longer grows as t. 

The data of Fig. 3 hint that the R 2 growth may be slowing down significantly 
for large time. A review by Simpson [19] states that if the buoyancy-inertia 
balance of forces gives way to a buoyancy-viscous balance, R will change from 
a t0.5 growth to a t0.25 growth. The time at which this transition occurs is given 
by 
t, = ( V/vgA)“3 (9) 
where u is the viscosity of the fluid. This expression has been successfully com- 
pared with data but only for experiments in which Vand A remained constant. 
It can be modified to use a mean value of Vand A for application to an entrain- 
ing dense gas cloud. Recalling that VA = V, & , and borrowing the asymptotic 
value for cloud volume from eqn. (25)) eqn. (9) can be written in non-dimen- 
sional form as 

2cz 
<, = [~(gV,,A,)1/2]11(3-lf1) (10) 

The Havens and Spicer experiments which produce the smallest tr* have V, = 34 
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litres and p,/p,=2.16 (see Table 1). Taking an air viscosity of 1.5~ low5 m2 
s-l, we find that &, = 1660. This is the non-dimensional time at which viscous 
effects should begin to affect the radial growth. This time is well beyond the 
range of the Havens and Spicer experiments. 

2.2 Initial acceleration 
In Section 2.1, it was mentioned that eqn. (4) resulted from a quasi-equilib- 

rium of forces. When the cylinder is released, however, there must be a period 
of acceleration from rest. The acceleration zone is quite evident in Fig. (3) for 
nondimensional times less than 15. It is somewhat fortuitous that the data 
cling to a single line, implying that the curve is universal. If so, we can derive 
a kinematic relationship between R and t without describing the dynamics of 
the problem. Since the slope of the curve for small time appears to be 2, an 
appropriate asymptotic form of the curve near t = 0 is 

R2 -Rz = a, i2 (ie 10) (11) 

This expression is physically realistic since for t=O, the velocity is zero and 
the acceleration is positive and decreasing. Blending eqns. (8) and (11 ), we 
have a general expression for the location Rf of the leading or frontal edge of 
the cloud given by 

Rf __g = %a4f2 

2a, +a4z112i (12) 

Retaining the former parameter value of a 1 = 1.16, eqn. (12) makes a good fit 
with the data if the new acceleration parameter is chosen as a,=O.35. The 
mean and standard deviation of Rmod/Robs are 1.012 0.042 for 1-c i< 20, and 
0.97 + 0.047 for 20 -C i< 100. Equation (12) is plotted in Fig. 3. By equating the 
two terms of the denominator of eqn. (12)) we find that the acceleration period 
gives way to the quasi-equilibrium period at a time t N 42. This implies that the 
characteristic time r given by eqn. (7) is a measure of the period of initial 
acceleration of the expanding cloud front. 

3. Entrainment 

Entrainment is the process by which ambient air is captured at the cloud 
boundaries and is mixed into the cloud. Several experimental studies have been 
done to examine the process and are reviewed by Simpson [ 201. 

In this review, there is a great deal of photographic evidence from both gas 
and liquid flow studies to show that many gravity flows have a distinct head at 
the leading edge. The head is the region of intense turbulence generation and 
mixing. Most 2dimensional laboratory studies examine a stationary hydraulic 
flow balanced by an opposing wind field. The flow is complex, with fluid mov- 
ing from the tail along the floor into the head, and returning along the top 



surface of the tail. Turbulence may consist of large organized waves, or lobes, 
or may be diffuse. It is generally more vigorous over the head than over the 
tail. 

In our application, we are concerned with a sudden cylindrical expansion 
into a calm atmosphere. The maximum concentration torus and disk data that 
were abstracted from the concentration vs. time curves at each receptor [ 111 
indicates that the torus concentration falls off as t-‘.5 (Fig. 8) whereas the 
disk concentration falls off as t -LO (Fig. 4). This is in keeping with the obser- 
vation that the turbulence, and hence entrainment, is more vigorous in the 
torus than in the disk. 

A box model serves to describe the temporal behaviour of a characteristic or 
significant concentration which we shall take as the maximum concentration. 
Since a box model concentration is uniform, an implicit assumption is that 
entrained air is mixed rapidly throughout the box. Experimental results will 
resemble box model results only if there is adequate mixing in reality. We are 
interested in separate box models for the disk and for the torus. 

Initially, we examine the possible entrainment mechanisms into the disk or 
the torus. Virtually all cylindrical box models begin with the equation 

(13) 

where ut and u, are the top and edge entrainment rates respectively. Similarly, 
top entrainment into a torus can be described by 27rRWut where the torus width 
W<< R. Note that the structure of eqn. (13) also serves to describe entrain- 
ment into the torus provides that Wa R. Traditionally it has been felt that on 
the edge, there was vigorous entrainment acting upon a small area whereas on 
top, there was weak entrainment acting upon a large area. Hence there was a 
possibility of comparable net entrainment on each surface. If we assume that 
the entrainment velocity is proportional to the radial expansion speed, eqn. 
( 13 ) can be integrated exactly [ 41. However, the entrainment process can be 
examined more clearly if we assume either top or edge entrainment to be 
dominant. 

Since entrainment and cloud turbulence are closely linked, it is instructive 
to examine the total rate of change of turbulence energy (TE) equation given 
by Mellor and Yamada [ 211: 

(14) 

where q2 = uk) -z L and A are tu rbulence length scales, and q and Ui are scalar 
components of the turbulent and mean velocities respectively. The total rate 
of change of TE is controlled by the relative contributions of, from left to right, 
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shear production, dispersion, buoyancy work, and dissipation on the right hand 
side of eqn. (14). Since the height to width ratio rapidly becomes small in a 
collapsing cloud, the vertical gradients become dominant. When applied to an 
unsteady non-advecting box, eqn. (14) can be simplified (by using the equa- 
tions of Section 2 ) to become 

cb2 b,s2U bzq3 b,gq&Vv, bag3 ----=---- -- 
dt H H V H 

(15) 

Neglecting side entrainment for the moment, volume growth due to top en- 
trainment is described by 

dV 
dt=nR2v, (16) 

where vt=b5q, bl to b5 are universal calibration constants, and U=dR/dt. In 
our search for simple solutions (which are suggested by the near linear con- 
centration decay in the log-log plots of Figs. 4 and 8), we assume that qa t”. 
Since Ra to.5 ,eqn. (16) integratestogive Vcct”+2fromwhichHccVR-2cCtn+‘. 
The time dependence of all terms in eqn. (15) can now be evaluated. 

If we assume that a quasi-equilibrium exists between shear production and 
one of the decay terms of eqn. (XI), dimensional analysis shows that n= - 0.5. 
This implies that Vat’.‘, Ha t0.5, and Cat-‘.5. This behaviour is not sup- 
ported by the disk data but is supported by the torus data. Furthermore, the 
analysis is also applicable to the torus since top entrainment described by eqn. 
(16) is equivalent to top entrainment into the torus provided that the torus 
width is proportional to R. Assuming a quasi-equilibrium between the shear 
term and any decay term of eqn. (15), we find that qa U (radial expansion 
speed). This relationship has been assumed in many box models. 

If we assume that there is not enough shear to support a quasi-equilibrium, 
then the TE decays in proportion to the remaining terms on the right side of 
eqn. (15). For this assumption of unsteady decay and negligible shear, the 
results apply only to the disk, where shear may be small. If the decay is due to 
buoyant work done by the cloud, we find again that n= -0.5 which leads to 
disagreement with the disk data. On the other hand, if the TE decay is due to 
either diffusion or dissipation, then n is undefined and may take any reason- 
able value. Hence, it is possible to choose a value of n to suit the disk concen- 
tration decay data once eqns. (15) and (16) are integrated. This analysis sug- 
gests that there is no ongoing turbulence generation in the disk as the TE 
decays, and that n = - 1.0 may be chosen to fit the data. 

A similar analysis can be done for edge entrainment, by replacing the right 
side of eqn. (16) with BnRHv, where v e = b6q, and b6 is a constant. A more 
restricted set of solutions is available and allows only a single value of n, i.e., 
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n= -0.5. If shear-generated turbulence is assumed to be important (a reason- 
able assumption for the edge of the expanding cylinder), then the concentra- 
tion decays as Ccc tmb, where b is an arbitrary constant. However, b is the only 
adjustable parameter and by itself is not sufficient to force the solution through 
the data. The top entrainment scheme allows for two adjustable parameters 
which are sufficient to fit the data. 

In summary, the above analysis suggests that top entrainment is dominant 
over side entrainment in its effect upon both disk and torus. Within the torus, 
shear-generated turbulence is balanced by any or all of the decay terms. Within 
the disk, there is insufficient shear to maintain turbulence and the initial value 
decays rapidly. The initial value is presumably created by the sudden collapse 
of the compact cylinder. This description is in keeping with experimental ob- 
servations which show the head of a gravity current to be more active than the 
tail. 

Intuitively, side entrainment is unlikely to be able to penetrate to the central 
portion of the cloud as the cloud is expanding. The radial growth rate into the 
disk (or into the torus) is proportional to the torus turbulence and hence to 
the expansion velocity U. Therefore, the entrainment zone grows inward in 
proportion to Rf as the gravitational expansion grows outward in proportion 
to Rf, the latter being larger. Although it does not influence the maximum 
concentration, the lateral diffusion is retained as a mechanism for generating 
lateral decaying “wings” on the disk and torus bodies. Vertical diffusion through 
the relatively thin bodies immediately establishes a concentration profile that 
decays with height. 

In the following two Sections, equations are developed for the time variation 
of the bulk concentrations of the disk and torus. The concentration of most 
interest is the maximum concentration. Hence in calibrating the model, the 
bulk concentration will be equated with the maximum, i.e., C,,, = C,, and 
cfi=cfp. 

4. The disk box model 

Following the collapse of a compact cylindrical cloud, we assume that it splits 
immediately into a disk and a torus. During the initial collapse, a portion f of 
the initial potential energy PE, is converted to initial turbulent energy TE, 
within the disk where these are given by [ 91 

PE, =p,gV,AJi,I2 (17) 

TE, =pV,q:/2 (19) 

and 

f= TEJPE, (19) 
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Assuming that further turbulence generation within the disk is negligible, and 
that the initial turbulence decays by viscous dissipation, eqns. (15) and (16) 
can be applied to the disk as 

and 

(21) 

Since V, = nRi Hd, these can be integrated to become 
-ba/bb 

(22) 

and 

For mathematical convenience, we ignore the existence of the torus and as- 
sume that the initial volume of the disk is the total initial volume V,. This is 
true initially, and for very large times after the disk has absorbed the torus. 
Using eqns. (17-19)) the initial turbulence within the disk can be expressed as 
a function of the initial aspect ratio Ho/D, 

(24) 

Inserting this into eqn. (23)) and regrouping the constants, the general expres- 
sion for the bulk volume growth of the disk becomes 

(25) 

where the universal constants cl and c2 are chosen such that the bulk concen- 
trations C,,, match the peak concentrations C,. The bulk concentration is 
given by 

Gil = C&/CO = VOl Vd (26) 

where CO is the initial gas concentration. These equations are sufficient to 
characterize the time decay of the disk concentration. In order to characterize 
the radius Rd, we choose an empirical expression which allows the radius to be 
R, initially and proportional to Rf at later times, i.e., 

a&z?+J;(R&R:) (27) 
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where u, will be determined later. The height of the disk associated with grav- 
itational slumping and turbulent entrainment is then expressed as 

I& = H,/l= V.-J&: (28) 

The calibration constants cl and c2 were chosen by comparing the modelled 
concentration eqn. (26) with the observed peak concentrations of Havens and 
Spicer [ 111 using the statistics r= Cmod/Cobs and log r. For values of cl = 0.040 
and c2=0.5, the mean and standard deviation (SD) of r are 1.04 ? 0.31 over 
the full range of data. The data and the theory (model 1) for three values of 
Ho/D, are shown in Fig. 4. (Model 2 differs from model 1 primarily in the 
choice of disk parameters cl, cz, and a7 and will be discussed in Section 8.) The 
importance of the aspect ratio in eqn. (25) could not be ascertained. When 
Ho/D, was eliminated from the equation, the standard deviation was virtually 
unchanged. Although the aspect ratio ranged from 0.4 to 1.57, uncertainty in 
the data may have masked the influence of Ho/D,. 

A knowledge of the mean and standard deviation of r (or log F) allows us to 
characterize the uncertainty of applying the model to a comparable problem. 
The uncertainty would be less well known if applied to an alternate problem 
with significantly different initial conditions. The four factors which contrib- 
ute to uncertainty are (1) errors in model physics, (2) errors in model inputs, 
(3) errors in observations, and (4) inherent uncertainty [22]. In the present 
laboratory application, errors (2) and (3) are minimal, since environmental 
conditions and measurement locations are controlled. Inherent uncertainty 
arises due to random or turbulent processes over which we have no control. A 

Fig. 4. The decay of the near-surface core concentration as the disk expands about the point of 
release: H,,/D, =0.4,1.0,1.57 (Lagrangian mode). --- Model 1; - - Model 2; 0 data from Havens 
and Spicer [ Ill; A Thorney Island No. 9 experiment. 
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qualitative picture of inherent uncertainty is presented in several references 
in which traces of concentration vs. time are superimposed for identical initial 
conditions [ 11,23,24]. 

The parameter o, is used to adjust the size of Rd relative to Rf. Since mea- 
surements of Rd are not available, a7 cannot be evaluated directly from eqn. 
(27). However, it can be evaluated through the use of eqn. (28). In the follow- 
ing Section, the concentration distribution as a function of height z and disk 
height Hd is examined. The parameter a, is chosen so that the modelled dis- 
tribution fits the measured distribution. 

A model which is calibrated to a data set and which reproduces its behaviour 
with a small SD is a good model, assuming that it contains relevant physics 
and is not just a curve-fitting exercise. A better test is to apply it to an inde- 
pendent data set. One study which has a significantly different initial volume 
is the full scale Thorney Island dispersion study [ 121. Of the several experi- 
ments carried out, Trial No. 9 is the closest to a calm, with a 10 m wind speed 
of 1.7 m s-l. The initial volume of dense gas is several orders of magnitude 
larger, i.e., 2000 m3. The Thorney Island data tit comfortably within the lab- 
oratory data (Fig. 4). 

The Thorney Island data were abstracted from concentration vs. time his- 
tories at the lowest level (0.4 m) at each of several receptors directly downwind 
from the source. From each trace, the peak concentration and its time of arrival 
were selected. There was no obvious distinction between the disk and torus. At 
any given time the ground-level disk concentration equals or exceeds the torus 
concentration, since the torus concentration decays more rapidly. Due to the 
wind, the torus passes by the receptor much more quickly than by gravitational 
settling alone. Since there is insignificant concentration decay during the pas- 
sage of the torus, the peak concentration will be associated with the disk. Also, 
since the initial decay is due primarily to self-generated turbulence rather than 
wind-generated turbulence, all of the Thorney Island trials fall initially along 
the general decay curve of Fig. 4. 

A second study with significantly different initial conditions is the labora- 
tory study of Meroney and Lohmeyer [ 131. This report contains concentration 
decay data for clouds having much smaller initial volumes of 35,165, and 450 
cm3. However, the peaks in each concentration vs. time trace are associated 
with the torus and will be plotted later with Havens and Spicer’s torus data. 

5. The disk concentration distribution 

In the previous section, we treated the disk as if it were uniform in concen- 
tration, and as if air entrained through the top of a porous cylinder were in- 
stantly mixed uniformly throughout the volume. However, experience tells us 
that in the narrow vertical dimension, a smooth distribution from a maximum 
at the surface to zero at the upper edge is quickly established. In the radial 
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direction, a much longer time is required for the edge turbulence to erode away 
the uniform core as the disk expands outwards. The core is uniform only in the 
sense that its concentration is radially invariant. Such a core is evident in the 
solutions of complex models [ 25,261, wind tunnel experiments [ 15,271, and in 
some field experiments [ 251. Within the core of radius R, (Fig. 1 ), the concen- 
tration is assumed to be Gaussian in the vertical direction and is given by 
C, =Cdbe-zV2&d (r<R) (29) 

For a radius r beyond R,, we assume 

Cd=Cdbe- z2/2&ie- (r-R,)~/2a?c1 
(r>fL) (30) 

In these expressions, C& is the surface or maximum concentration and is taken 
to be the. bulk concentration of eqn. (26). The parameters o,d and a, are the 
standard deviations of the concentration distributions in the vertical direction 
and in the radial direction, respectively. As the cylinder grows due to gravita- 
tional spreading, the edges are eroded due to motion-induced turbulence. The 
position of the core radius R, marks the boundary of the central part of the 
cloud as yet undisturbed by the edge turbulence. The distribution of gas on the 
edge is assumed to be Gaussian as given by eqn. (30). If we assume that the 
rate of growth of the distribution width o,d is proportional to the cloud rate 
dR,/dt, then 

cr rd =%(& -R,) (31) 

where a3 is a universal constant to be determined. If we now integrate eqns. 
(29) and (30) over r and z to determine the total mass of gas mp in the cloud, 
we find that 

m,=Cdb(n/2)“2a~K(R,2+(2n)1’2R,ard+2a~d) (32) 

Since mg = cdb vd = cdbHdn@, then by comparison with eqn. (32)) we see that 

Hd = (a/2) 1’2&d (33) 

(34) 

Note that eqn. (32) has the correct asymptotic limits for (1) the mass of a 
cylinder when t = 0 and Ok = 0, and for (2 ) the mass of a Gaussian puff at large 
time when R, = 0. 

In order to test eqn. (29) for the vertical distribution of material, and to 
estimate the disk height Hd (or &d), we compare the predictions of eqn. (29) 
to the data which were measured at heights of 0.6, 1.3, 2.0, and 4.0 cm [ 111. 
The expression for surface (or bulk) concentration C& was established in Sec- 
tion 4. The parameter a, is used to control the size of Rd which in turn controls 
Hd through the rehtiOn vd= 71RiHd. 
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By examining the means and standard deviations of r = Cm,JC,,h at the var- 
ious heights, the best fit occurred for a value of a7=0.94. The scatter in the 
model-data comparison as a function of height is shown in Fig. 5. The value of 
ad used to nondimensionalize the height is calculated from eqn. (33). Most of 
the points which cluster around Z/CJ~- -0.3 are the points of lowest measure- 
ment (z=O.6 cm). Hence their scatter in the ordinate direction is not due to 
an inadequate model of the vertical distribution but is a measure of the model’s 
uncertainty in calculating the surface concentration (Section 4). As the ab- 
scissa increases, the scatter increases somewhat but the mean ordinate value 
remains close to unity, suggesting that the Gaussian model is reasonable. For 
the receptors beyond the lowest level, the mean and SD of the ratio I are 
1.05 + 0.59. Referring back to Section 4, we see that the mean and SD of r for 
the ground level receptors were 1.04 + 0.31. 

With a7 determined, both Rd and Hd (and Q) are quantified. The modelled 
cloud height oZd is plotted in Fig. 6 as model 1. The non-dimensional height 
falls from a value of order unity to a much smaller constant value. The disk 
height variation described as model 2 results from a different choice of calibra- 
tion parameters and is discussed in Section 8. Torus height and peak concen- 
tration are unaffected by these parameter changes. 

The remaining unknown parameter in the above equations is a3 in eqn. (31). 
In eqn. (34)) we have a relation among Ed, R,, and or;d. R, is the radius of the 
core region within which the concentration is invariant with r. As an expand- 
ing cloud passes over a receptor, the concentration will increase gradually, reach 
a maximum when the receptor distance equals R,, and decay thereafter as top 
entrainment continues. The peak concentrations cd, which were abstracted 
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Fig. 5. The ratio of modelled to measured concentrations within the disk at various elevations 
(data from havens and Spicer [ 111) . 
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Fig. 6. The modelled variation of torus height and disk height as a function of time: Ho/D, =0.4, 
1.0,1.57. Solid curve torus; --- Model 1 disk; - - Model 2 disk. 
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Fig. 7. The growth of the core radius within the disk as a function of time using Model 1. Solid 
curve from eqn. (34); 0 data from Havens and Spicer [ 111. 

from the data should therefore mark the arrival of R,. Since the time of arrival 
tdP is known, we can plot R, vs. t (Fig. 7). The modelled value of R, is derived 
from the quadratic expression of eqn. (34). Using eqn. (31)) a value of a, = 0.21 
provides the best fit. An alternate and preferable method for determining a3 
will be discussed in Section 8. 



6. The torus box model 

When the uniform cylinder of gas is released, radial motion is greatest at the 
bottom where the hydrostatic pressure is largest. This portion of the cloud 
forms the leading torus, having a circulation upward at the front and rearward 
at the top. We assume that the disk and torus separate immediately and that 
they grow independently of each other thereafter. 

The purpose of the torus box model is to predict a bulk concentration C,. 
The most useful bulk concentration is one which is equal to the torus maxi- 
mum surface concentration. Maximum concentrations C, were abstracted for 
each receptor at heights of 0.6,1.3,2.0,3.0,4.0,6.0,8.0,11.0, and 16.0 cm [ll]. 
The data at 0.6 cm were used to calibrate the box model estimate of maximum 
concentration; the data at higher elevations were used to estimate the height 
of the torus and to evaluate the efficacy of the Gaussian in describing the ver- 
tical concentration distribution. 

The torus is represented as an annulus having a rectangular cross-section of 
height I&, width W,, and outer radius Rf (Fig. 1) . Assuming that W, is much 
smaller than Rf, the torus volume is given by 

V, = 2nRf W,H, (35) 

If we make the assumption that d W,ldt is proportional to the turbulence speed 
q which in turn is proportional to dR,/dt, and that the dominant air entrain- 
ment is through the top with a velocity utf similarly proportional to the front 
velocity dRf/dt (Section 3)) then 

Wf=a6Rf (36) 

(37) 

where a5 and a6 are prOpOhOndity constants. The rate of VOhme increase is 
given by 

dVf ==2nRf W,v, 

which readily integrates to become 

(39) 

where V, is the initial volume of the torus. We are assuming that it is a con- 
stant fraction of the initial cylinder volume V,,. This fraction must be solved 
for along with the parameters a, and a~. The equation for the bulk concentra- 
tion is simply the inverse of eqn. (39), i.e., 

Cfi = C&/C, = v&J v, (40) 
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When this modelled bulk concentration is compared to the measured surface 
concentrations C, of Havens and Spicer, the numerical value of the parameter 
group which gives the best fit is us a, VJ Vfo - - 0.018. The fit is measured by the 
mean and standard deviation (SD) of the ratio r=Cmod/Cobs. These are 
1.04 2 0.32 over all data points. Equation (40) and the experimental data Ca/ 
C,, for 2 = 0.6 cm are plotted in Fig. 8. 

As an independent check on the model, we can use the laboratory data of 
Meroney and Lohmeyer [ 131 for zero wind conditions. In their Table 4, they 
present peak concentrations and times of occurrence for receptors at several 
different radial locations. The receptors are located at a height of 2 mm, and 
at radial distances of 5 to 80 cm from the release point. The release volumes 
are small: 35, 165, and 450 cm3. The peaks are associated with the arrival of 
the torus, at least for the nearby receptors, and are in reasonable agreement 
with the other data in Fig. 8. For the more remote receptors, we would expect 
the peak concentrations to be associated with the more slowly decaying disk. 
However, the disk is thin enough that molecular diffusion is probably signifi- 
cant in the vertical direction, causing disk concentrations also to fall more 
rapidly. Certainly the small values of 6. in Table 1 suggest that viscous effects 
are important during the experiment. If all the data are now compared to eqn. 
(40)) the mean and SD of the ratio r are 1.07 + 0.40. 

With V, and Rf established, the height Hf can be written from eqn. (35) as 

(41) 

Fig. 8. The decay of the peak torus concentration as the torus is followed in time bgrangian 
mode). Solid curve from eqn. (40); 0 Havens and Spicer; 0 Meroney and Lohmeyer [ 131. 
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Since Vf and Ri are known, the parameter group Vfo/V,-,k is chosen in order 
to have the concentration distribution in the vertical direction match the mea- 
sured distribution. This is done in the next section. 

7. The torus concentration distribution 

Because the torus has both rotational and translational motion which cause 
vigorous entrainment, and because the cross-sectional dimensions are small, 
we assume that a Gaussian distribution is established immediately in the ver- 
tical and radial directions. Also, because the translational motion is large enough 
to prevent any diffusion ahead of the front, the distribution is assumed to be 

(42) 

for a receptor located at r, z. 
If we integrate eqn. (42) over all space to find the mass nf of the torus, we find 
that 

mr=Cfb2~Rf(K/2)“2a,f(K/2)1’2~a (43) 

If we compare this expression with the dimensions of a bulk model, i.e., 

mf=CfD2nRfHfWf 

then by comparison we find that 

(44) 

Hf = (n/2) 1’2~zf (45) 

w, = (a/2)‘%fl (46) 

Equation (42) can now be used to examine the usefulness of the Gaussian 
distribution in the vertical direction, as well as to determine the height Hf (or 
ozzf) by evaluating the parameter Vfo/Vou6. The peak frontal concentration 
data Cti at all receptor heights are always located at the front of the torus, i.e., 
at the radius Rf. By trying to have the means of the ratios C,,&C,,,, close to 
unity at all receptor elevations, the best choice for VJV,,a, is 3.5, using the 
Havens and Spicer data. This information, along with the value of the param- 
eter group in eqn. (39) allows us to evaluate a5 =0.063. Because the torus is 
much higher than the disk, concentration measurements could be taken as 
high as 16 cm. 

The ratios of modelled to observed concentrations are plotted in Fig. 9. For 
the same reasons mentioned in Section 4, these results are a reasonable indi- 
cation of the validity of the Gaussian distribution. The bias and scatter of the 
ratio r (as measured by the mean and SD of r) for the receptors above 0.6 cm 
are 1.07 ‘r 0.66. The SD is twice the ground level of 0.32 (Section 6). 

The height of the torus as a function of time is plotted in Fig. 6. Like the 



60 

lo_ SIS1111, Ill7l-n I IISIII 

. . 

T e e 
% ..:.: . . . . . . 
CI 

\.- . . . . 

s ‘f . . :. 
..‘\. $‘J 

. . . . -. . 

_...+;..: * :. . ..:’ . . . . . 
+g . . 

d 
. .:’ -.. .~ 

. ‘.; . . 

: s 
u” 

Fig. 9. The ratio of modelled to measured concentrations within the torus at various elevations 
(data from Havens and Spicer [ 111) . 

disk, it collapses strongly at first but not as far. It then passes through a min- 
imum and climbs steeply as the torus entrains air more vigorously than the 
disk. 

8. The combined model 

In Sections 4-7, we have developed concentration equations for the disk and 
torus. Now the two models can be combined into a dense gas puff model capable 
of recreating the original experiments. The model net concentration at a fixed 
receptor is taken as the sum of the disk and torus concentrations. Close to the 
source, the maximum total concentration is not allowed to exceed the initial 
concentration. The concentration equations, using the calibration constants 
developed earlier, are referred to as model 1. 

The disk and torus were calibrated using a very limited and specific portion 
of data abstracted from a continuous set of data at each receptor. The analysis 
was Lagrangian in that we were following the puff from receptor to receptor, 
selecting only maximum concentrations. In this section, the model, con- 
structed from single data points from numerous experiments, will be treated 
in an Eulerian reference frame. It will be used to predict the concentration as 
a function of time as the non-advecting puff spreads over a fixed receptor. 

There remain two constants that require calibration using the continuous 
measurements at a fixed receptor. These are a, and a, and control the relative 
sizes of o=d and ati respectively. Based on 4 or 5 runs with different initial 
conditions, reasonable values for the constants are a, = 0.3 and += 0.15. This 
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value of a, is more accurate than the one found in Section 4 because of the 
larger uncertainty in locating the time or arrival of R,. 

Figure 10 (a) contains traces of 18 experiments having identical initial con- 
ditions and receptor locations. The concentrations were measured at a radius 
of 2 metres and at the lowest height of 0.6 cm above the laboratory floor. The 
initial volume, specific gravity, and height/diameter ratio were 54.1 litres, 4.19, 
and 1.0 respectively. The variation among the traces gives a qualitative indi- 
cator for the inherent variability in these experiments. 

In an individual trace, the separation of torus and disk is usually marked by 
a local minimum or by a distinct change of slope. The separation is less distinct 
if we examine the ensemble of traces (not plotted) - a mean curve of all the 
traces. The ensemble curve is the logical one to compare with a mathematical 
solution (Model 1) which is a solution for. a mean turbulent state. 

In Fig. 10 (a), Model 1 reproduces the early portion of the ensemble of curves 
fairly accurately. As the disk begins to dominate (t> 5 seconds), the model 
concentration is consistently lower than the data. This is unexpected, since 
the model was calibrated to pass through the mean of the peak data (Fig. 4). 
The explanation seems to be that the disk data, abstracted as peak concentra- 
tions in the Eulerian reference frame (Fig. 2 ) , are not peaks in the Lagrangian 
reference frame. In Fig. 2, the concentration C&, identified as occurring at time 
td,, is at the front edge of the expanding disk but is slightly reduced due to radial 
dispersion. Closer to the source and within the undisturbed core, the concen- 

0 ,.L”s*,‘,,,l*,,,l 5 10 15 20 
t (seconds) 

Fig. 10. Measured and modelled concentrations vs. time at two different receptor elevations z, at 
a radius of 2 metres (Eulerian mode). Initial conditions: V,=54.1 litres,p,/p,=4.19, H,,/D,=l.O 
(data from Havens and Spicer [ll]). (a) z=O.6 cm and (b) at 2=6.0 cm: solid curves are mea- 
sured data; --- Model 1 fit; - - Model 2 fit. 
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TABLE 2 

Universal calibration constants and the equations where they first occur 

Cl C-2 VkJV, al a3 a4 a5 a6 a, 

Model 1 0.04 0.5 0.53 1.16 0.3 0.35 0.063 0.15 0.94 
Model 2 0.07 0.4 0.7 1.16 0.35 0.35 0.063 0.2 0.8 
eqn.: (25) (25) (39) (4) (31) (11) (37) (36) (27) 

tration is higher. Hence all the disk peak concentrations C, are low, becoming 
more so at larger times (at remote receptors where radial diffusion is larger). 
Consequently, the model concentration is low since it is calibrated to these 
data. 

The data which are reliable are the original traces as in Fig. 10 (a). We can 
qualitatively recalibrate the disk and torus equations to make a reasonable fit 
to these data. This is referred to as Model 2. The calibration constants are 
given in Table 2. With a value of c 2 = 0.4, the disk peak concentration falls more 
slowly, i.e., &,o~~t-~.~ (Fig. 4). The disk height falls asymptotically as t-O.’ 
rather than approaching a constant (Fig. 6). Finally, the composite model 
passes comfortably through the data at a fixed receptor as shown in Fig. 10 (a). 

In Fig. 10(b), there is good agreement between the data at an elevated re- 
ceptor (z= 6 cm) and both model predictions. Only the torus contributes to 
the concentration since the disk is shallow. According to the model, the disk 
ozd is 2 cm at t= 5 s, and 1.4 cm at t =20 s. 

Model 2 was applied to several other receptors at different radial locations 
and showed good agreement with the concentration trace data in each case. 
The concentration uncertainty or standard deviation which was calculated for 
Model 1 should be a reasonable estimate of the uncertainty for Model 2. 

Using the values of parameters and parameter groups established earlier, 
the initial volume of the torus V, relative to the total initial volume V, is found 
to be Vfo/Vo = 0.53 for Model 1 and 0.7 for Model 2. 

9. Conclusions 

(1) Simple entrainment models have been a source of concern because of an 
apparent violation of the law of conservation of energy [ 51. In such models, 
the cloud total energy grows indefinitely as the cloud height and radius grow. 
The present analysis of the Havens and Spicer data suggests that the height 
of the central portion (disk) decreases slowly, whereas the torus height grows 
continuously (at least within the range of the data). The increase in potential 
energy of the torus is probably fed by its rotational and radial kinetic energy. 
No comment can be made on the behaviour of the concentration decay in calm 
air for non-dimensional times beyond 400. 
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(2) Since the model gives reasonable results for several different experi- 
ments, it appears to be generally applicable for instantaneous dense gas re- 
leases in calm air. 

(3) A cylindrical model is quite general in application, since most instan- 
taneous releases of arbitrary shape probably tend towards such symmetry. 

(4) The torus is assumed to grow independently of the trailing disk. The 
torus entrains material through both top and sides. As a box model, it has a 
rectangular cross-section. As a concentration model, it simulates a circular line 
source with radius Rf at height zero, having Gaussian distributions in (a) the 
vertical and (b) radially inwards towards the centre. The peak concentration 
decays as t-1.5. 

(5) The disk equations assume that all of the initial cylinder mass remains 
in the disk. This conservative assumption does not seem to adversely affect 
the model predictions. The pollutant mass transferred initially to the torus is 
probably returned to the disk as time progresses. The air which is entrained 
through the top serves to reduce the peak concentration of the disk. Edge en- 
trainment causes the formation of a radial Gaussian distribution and tends to 
reduce the value of the core radius R,. Hence both top and edge entrainment 
are important, but for different reasons. The peak concentration decays as 
t -0.8 

(6) The Gaussian seems to be a suitable distribution for describing the con- 
centration variation in the vertical and radial directions. 

(7) The location of the leading edge of the cloud is accurate to within 5%. 
Surface concentration calculations are accurate to within about 30%. Concen- 
trations measured at arbitrary heights have less accuracy. These results hold 
to within the non-dimensional time and space regions defined by the experi- 
ments. The concept of accuracy means that about 68% of the data would be 
located within one standard deviation of the model estimate (mean). This 
assumes that the distribution of concentrations about the mean is approxi- 
mately normal. 

(8) For nondimensional times greater than 100, the following approximate 
relations hold: wf = u6Rf II 0.2Rf; Hf = a,& N 0.063R; a, N Wf N 0.2%; Rd N 
a,Rf-0.8Rf; a,d -a,Rd ~0.28Rf; & ~0.131~-~~~; Rf ~lt’.~. 

(9) The choice of r and log r as statistical variables is very useful in esti- 
mating error bounds on model estimates. Error estimates will be examined in 
a future study using a more practical model for calculating dispersion in non- 
zero winds. 
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